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Abstract

1. The Amazon River basin contains a vast diversity of lotic habitats and accompany-

ing hydrological regimes. Further understanding the spatial distribution of flow

regimes across the Amazon can be useful for recognizing riverine ecohydrological

processes and informing river management and conservation, especially in areas

with limited or inconsistent streamflow monitoring.

2. This study compares four inductive approaches for classifying streamflow regimes

across the Amazon using an unprecedented compilation of streamflow records

from Bolivia, Brazil, Colombia, Ecuador, and Peru.

3. Inductive classification schemes use attributes of streamflow data to categorize

river reaches into similar classes, which then may be generalized to understand

streamflow behaviour at the basin scale. In this study, classification was accom-

plished through hierarchical clustering of 67 flow metrics calculated using indica-

tors of hydrologic alteration (IHA) and daily streamflow data from median annual

hydrographs (MAHs) for 404 stations (representing >7,000 station-years) across

five Amazonian countries.

4. Classification was performed using both flow magnitude-inclusive and flow

magnitude-independent datasets. For flow magnitude-independent methods,

optimal solutions included six or seven primary hydrological classes for IHA and

MAH datasets; for approaches that retained magnitude, variance was sufficiently

large to prevent convergence to a specific number of classes.

5. Across methods, class membership was strongly associated with the timing, fre-

quency, and rate of change of flow, and spatially coherent clusters were associ-

ated with seasonal, elevational, and stream-order gradients. These results

highlight the diversity of flow regimes across the Amazon and provide a frame-

work for studying relationships between hydrological regimes and ecological

responses in the context of changing climate, land use, and human-induced hydro-

logical alteration.

6. The methodology applied provides a data-driven approach for classifying flow

regimes based on observed data. When coupled with ecological knowledge and

expertise, these classifications can be used to develop ecohydrologically informed

and management-relevant conservation practices.
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1 | INTRODUCTION

Tropical basins such as the Amazon, Mekong, and Congo are recog-

nized for their immense size, biodiversity, social–cultural diversity, and

range of distinct ecosystems (Abell et al., 2008; Coomes, Takasaki,

Abizaid, & Barham, 2010). These large river basins facilitate countless

ecosystem services at the local, regional, and global scales, including

food supply, navigation, flood regulation, and carbon sequestration

(Aylward et al., 2005), and they support nearly one-third of the

world’s freshwater fish species (Winemiller et al., 2016). Tropical river

networks traverse a range of environments (Gupta, 2008), intersecting

diverse landscapes and thus facilitating the success and movement of

riparian organisms (Winemiller et al., 2016). Hydrological processes

control floodplain dynamics (Bonnet et al., 2008; de Paiva et al., 2013;

Fleischmann, de Paiva, Collischonn, Sorribas, & Pontes, 2016), fishery

yields (Castello, Isaac, & Thapa, 2015; Isaac, Castello, Santos, &

Ruffino, 2016), biogeochemical cycling (Junk et al., 2011), and material

transport (Dunne, Mertes, Meade, Richey, & Forsberg, 1998;

Fassoni-Andrade & de Paiva, 2019; Filizola & Guyot, 2009). The main-

tenance of the hydrological regime thus maintains ecological function-

ing and ultimately interfaces with social, cultural, and economic

activities (Coomes, Lapointe, Templeton, & List, 2016; Coomes

et al., 2010). Critically, accelerated human activities in the Amazon,

such as hydropower development, land cover change, mining, and cli-

mate change are altering the hydrology of Earth’s largest basins and

increasingly threaten the stability of freshwater ecosystems (Castello

& Macedo, 2016). In this context, relating quantifiable aspects of the

flow regime to environmental flow criteria can help maintain ecosys-

tem processes in freshwater ecosystems, amidst historic and continu-

ing human alteration (Lima et al., 2014; Poff et al., 2010; Yarnell

et al., 2020).

As the largest catchment in the world, the Amazon basin pro-

duces one-fifth of global river discharge (Salati & Vose, 1984) and is

globally important in the regulation of large-scale atmospheric, hydro-

logical, and biotic interactions (Werth, 2002). Large elevation gradi-

ents across the Amazon shape the behaviour and distribution of

hydrological flow regimes through physioclimatic and geomorphologi-

cal features (Encalada et al., 2019; Freeman, Pringle, & Jackson, 2007;

McClain & Naiman, 2008), producing a range of diverse landscapes,

including montane and submontane forests (McClain & Naiman, 2008),

savannas (Malhado, Pires, & Costa, 2010), and wetland ecosystems

(Hess et al., 2015). The Amazon basin is characterized by marked sea-

sonality and spatial variation in rainfall (Espinoza Villar et al., 2009;

Liebmann & Marengo, 2001; Marengo, 2004), strongly driving river

pulsing, floodplain hydrology, and ecology (Hamilton, Sippel, &

Melack, 2002; Mertes et al., 1995) and maintaining habitat for aquatic

and terrestrial species (Castello & Macedo, 2016). Hydrological

connectivity regulates the structure and functioning of Amazonian

freshwater ecosystems and facilitates the survival, speciation, and

migration of freshwater species through lateral and longitudinal con-

nectivity (Anderson et al., 2018; Castello & Macedo, 2016).

Comprehensive biodiversity data enable the development of

effective conservation measures and targets (Landeiro, Bini, Melo,

Pes, & Magnusson, 2012), yet species-rich biodiversity hotspots such

as the Amazon often lack high-quality biological information

(Hopkins, 2007). The challenge of collecting large quantities of biodi-

versity data in mega-diverse basins is limited by time, labour, and

resources, and is potentially outpaced by high rates of speciation

(Dias, Cornu, Oberdorff, Lasso, & Tedesco, 2013) and human degrada-

tion (Castello & Macedo, 2016). For river ecosystems, a more effec-

tive and resource-efficient approach may be leveraging the availability

of hydrological data to relate flow regime characteristics to the

requirements and life-cycle histories of aquatic and riparian species

(Bunn & Arthington, 2002). At the basin scale, identifying shared and

unique characteristics among Amazon rivers can provide insights into

the hydrological requirements of species confined to a specific range

or biological niche, as well as the movement of aquatic species that

rely on longitudinal or lateral connectivity (Junk, Bayley, &

Sparks, 1989). For instance, the seasonal flood pulse is synchronized

with the life cycles of many fish, macroinvertebrates, and amphibians

(Junk, 2013), and many riparian species are accustomed to spatial and

temporal patterns of natural flow variability.

Spanning eight countries and one territory, the Amazon basin cur-

rently lacks sufficient intergovernmental agreements for coordinated

streamflow monitoring and inter-basin management (Junk, 2013),

making it difficult to manage water resources across boundaries. In

addition, the availability of long-term daily streamflow observations is

still relatively sparse in tropical basins, including the Amazon (Do,

Gudmundsson, Leonard, & Westra, 2018; Wohl et al., 2012). There is

a strong need for widespread and consistent streamflow monitoring

in the Amazon, and this need is partly motivated by the potential eco-

logical insights that may be gained by doing so. Understanding the

spatial distribution of streamflow patterns across the Amazon can pro-

vide insight into river functioning at the ecosystem scale and inform

aquatic conservation efforts that prioritize the natural flow regime

(Poff et al., 1997) and the maintenance of free-flowing rivers

(Anderson, Osborne, et al., 2019).

For a region such as the Amazon basin, with a diversity of flow

regimes, hydrological classification can be a useful tool for better

understanding similarities and differences in riverine ecohydrological

processes (Knoben, Woods, & Freer, 2018). Hydrological classification

is the systematic arrangement of rivers into groups with similar flow

regime characteristics and can be used to characterize flow variability,

streamline water resources management, explore flow–ecology
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relationships, prioritize conservation efforts, and transfer knowledge

to data-scarce regions (Olden, Kennard, & Pusey, 2012). For example,

the classification of river types is a primary step in the ecological limits

of hydrologic alteration (ELOHA) framework, developed by The

Nature Conservancy to determine and implement environmental

flows at the regional scale (Poff et al. 2010). The ELOHA framework

provides a foundation for developing and testing hypotheses about

flow and ecological relationships, but it first requires the collection of

long-term, spatially comprehensive streamflow data and the classifica-

tion of ecohydrologically similar river types.

Hydrological classification approaches are generally divided into

inductive and deductive methods, both of which aim to capture

shared patterns among streamflow time series and provide insight

into characteristics of the flow regime (Olden et al., 2012). Deductive

methods assign landscape units to classes and assume that the shared

physical attributes of a basin – such as topography, climate, and geo-

morphology – extend to similar flow patterns. For example, climate at

the global scale regulates humidity, seasonality, and temperature,

which interact to produce flow regimes that reflect local water and

energy budgets (Knoben et al., 2018). Taken together, catchment

climate, topography (Encalada et al., 2019), and geomorphological

features (Lilly, 2010) combine to create distinct river hydropatterns

that directly drive ecosystem structure, composition, and function,

and influence human societies from local to global scales (Anderson,

Jackson, et al., 2019). In contrast, inductive classification methods are

applied directly to a set of defined streamflow metrics, which should

be identifiable, robust, consistent across catchments, representative

of catchment behaviour, and yield discriminatory power in differenti-

ating between classes (McMillan, Westerberg, & Branger, 2017).

Inductive classification techniques require long-term streamflow data

that is both spatially and temporally representative of the system and

assign hydrological units to classes that maximize within-group simi-

larity and minimize similarity between groups. The resulting classifica-

tion organizes rivers into similar groups that are presumed to share

similar ecological response relationships, enabling the determination

of previously unknown flow–ecology relationships, and the identifica-

tion of key environmental flow criteria to maintain ecological function

(Poff et al., 2010).

Previous classification schemes in the Amazon basin have focused

on water chemistry, hydraulics, wetlands, and rainfall regimes, and

provide useful frameworks for understanding the geological and

topographical drivers that yield diverse flow patterns (Table 1). For

example, Junk et al. (2011) extended the wetland classification system

proposed by Brinson (1993) to devise an Amazon-specific taxonomic

wetland classification system based on climatic, hydrological, biogeo-

chemical, and botanical factors, resulting in 14 major wetland types.

Filizola and Guyot (2009) provided four station hydrographs represen-

tative of hydrological regimes in the Amazon River basin, highlighting

differences in the magnitude and onset of the wet season.

Venticinque et al. (2016) connected hierarchical stream classification

to the distribution of fish spawning areas. Beyond these studies, no

holistic efforts have been made to classify Amazonian flow regimes;

these vary across the basin, where large gradients in flow magnitude,

variability, and timing are so strongly tied to ecosystem structure and

function.

In this context, the objective of this study was to characterize

patterns of variation in natural flow regimes in order to capture

unique and shared streamflow characteristics relevant to river

ecology. This study leverages an unprecedented compilation of

streamflow records from Bolivia, Brazil, Colombia, Ecuador, and Peru

to develop the first inductive classification of streamflow across the

Amazon basin (French Guiana, Guyana, Suriname, and Venezuela were

not included), and highlights flow metrics that are meaningful at the

basin scale. The resulting work describes a set of four flow classifica-

tions assembled through distinct streamflow indicator datasets, each

of which highlights salient features of Amazonian flow regimes.

2 | METHODS

Our inductive classification framework is summarized in Figure 1.

Station flow records were used to create two classification datasets

for each station: one using 67 indicators of hydrologic alteration

(IHA) and environmental flow component (EFC) metrics, derived

from long-term flow records (Richter, Baumgartner, Powell, &

Braun, 1996), and the other using median annualized hydrographs

(MAHs). Although magnitude is a critical and structuring component

of the flow regime, we hypothesized that the large variance in dis-

charge across the Amazon basin (approximately five orders of mag-

nitude) could potentially mask other flow regime characteristics

when assessed at the basin scale. Thus, two additional datasets

were created to minimize the influence of flow magnitude: one

using a subset of 29 flow magnitude-independent (MI) IHA/EFC

parameters and the other using normalized MAHs (see further

details in Section 2.2). Hierarchical clustering was applied to each of

the four datasets, and the resulting output classes were compared

within and across methods. All analyses were performed in

ARCGIS 10.6 and R STUDIO 3.5.1.

2.1 | Streamflow data collection and preparation

Daily streamflow data were acquired for Bolivia, Brazil, Colombia,

Ecuador, and Peru through the following databases: SO HYBAM

(http://www.ore-hybam.org), Agência Nacional de �Aguas (http://

www.ana.gov.br), IDEAM (http://www.ideam.gov.co), and INAMHI

(http://www.serviciometeorologico.gob.ec). The initial dataset

included 537 streamflow stations, and stations were included or

excluded based on their ability to meet data quality criteria (Table 2).

Streamflow records of fewer than three complete years were

removed. Data from the remaining stations were processed and

quality controlled as described below, yielding a total of 404 stations

(representing 7,825 station-years) over a 90-year period (1928–2018)

(Figure 2). The average station record was 19.2 ± 12.6 (SD) years.

Data were next assessed for completeness on a year-by-year basis.

Years for which the data were less than 80% complete (i.e. <292 days
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of data in a calendar year) were removed. For years with at least 80%

data completeness, gaps were filled using multiple linear regression

(Beauchamp, Downing, & Railsback, 1989). Predictor variables were

selected as nearby stations that contained data during the missing

data gap through a forward model selection algorithm. If the regres-

sion model yielded an adjusted R2 value of ≥0.7 for predicted flow,

then the interpolated gap values were accepted. If multiple linear

regression yielded adjusted R2 values of <0.7 and the gap was shorter

than 10 days, it was filled using linear interpolation. If the gap was

greater than 10 days and could not be predicted through multiple lin-

ear regression, the year was removed from the analysis.

Streamflow data were further filtered to obtain natural flow

records by removing stations potentially affected by dams. As a

conservative estimate, any stations within 200 km (Cartesian dis-

tance) of an operational dam were first identified as potentially

affected (Valle & Kaplan 2019). From this list, station removal was

assessed using available dam construction and operation years and

pre- and post-dam flow record at each potentially affected station

(Anderson et al., 2018; ANEEL, 2019; RAISG, 2012; Timpe &

Kaplan, 2017). In cases where dam construction dates were

unavailable or the dam pre-dated the available period of flow data,

dam impacts were assessed by comparing contemporaneous flow

TABLE 1 Existing classification schemes within the Amazon basin

Classification method Type of classification No. of classes Reference

Principal components analysis Water chemistry 3 Ríos-Villamizar, Piedade, Da Costa, Adeney, &

Junk, 2013; Sioli, 1957

St. Venant Flood wave 5 Getirana & Paiva, 2013

K-means hierarchical clustering Cloud 5 Giangrande, Wang, & Mechem, 2020

Ward’s hierarchical clustering Streamflow and precipitation 4 Laraque, Ronchail, Cochonneau, Pombosa, &

Guyot, 2007

Taxonomic Wetlands 14 Junk et al., 2011

Inspection of sediment yield Streamflow 4 Filizola & Guyot, 2009

F IGURE 1 Inductive classification
framework. Streamflow data were
characterized by two datasets:

(i) indicators of hydrologic alteration
(IHA)/environmental flow component
(EFC) parameters; and (ii) median
annualized hydrographs. Both datasets
were used to create input datasets with
and without the influence of discharge
magnitude. Resulting classes were then
compared to reveal salient attributes of
the flow regime captured by each
approach

TABLE 2 Summary of streamflow station number during data processing (see data sources in main text)

Bolivia Brazil Colombia Ecuador Peru Total

Acquisition 38 366 54 20 59 537

Removal of stations with <3 years data AND/OR ≤80%
data/year

−5 −76 −8 −2 −6 −97

Removal of stations following interpolation and

homogenization

−10 −2 0 0 −1 −13

Removal of potentially dam-altered stations 0 −12 0 −3 −8 −23

Total 23 276 46 15 44 404

Note: The ‘Acquisition’ row refers to the number of initial daily streamflow stations. Prior to this step, duplicate stations between countries were

compared and consolidated, and stations with no streamflow data were removed. The following rows reflect stations that were removed at each step. The

‘Total’ row and column reflect the final number of stations for that country and processing step, respectively.
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records of upstream and downstream stations in both the pre- and

post-dam periods, when available (Solans & Poff, 2013). If dam

influence was confirmed or strongly suspected, only pre-dam

streamflow data (if available) were retained in the analysis

(Table S1).

2.2 | Flow indices and mean annual hydrographs

A variety of ecohydrological flow indices were calculated and median

annual hydrographs were developed for each of the 404 stations

described above. INDICATORS OF HYDROLOGIC ALTERATION (IHA; Nature

Conservancy, 2009) provides a standardized approach to calculating

the hydrological indicators and EFCs that represent characteristics of

flow time-series data (Richter et al., 1996). Combined, the IHA and

EFC metrics characterize the flow regime using 67 indicators across

10 broad flow categories, with each indicator directly related to

known ecohydrological relationships (Nature Conservancy, 2009).

Given the choice of hundreds of available flow metrics, IHA and EFC

metrics were selected because of their relevance to ecological func-

tioning across multiple timescales and encompassing primary compo-

nents of the flow regime, their ability to be altered by anthropogenic

basin modification (Arias et al., 2020; Lima et al., 2014; Timpe &

Kaplan, 2017), and their subsequent ability to manage and restore

environmentally sound flow regimes (Poff et al., 2010). The 67 IHA

and EFC parameters were calculated for each complete year of data

across all stations. For each parameter, mean and standard deviation

metrics were tabulated on a calendar-year basis to retain seasonal dif-

ferences between stations. IHA and EFC parameters are summarized

in Tables 3 and 4, with the 29 flow magnitude-independent parame-

ters (described below) noted in italics. Low and high pulses are defined

as the number of days fewer than or greater than a specified thresh-

old (one standard deviation from mean annual flow). Rates refer to

the average positive or negative differences between consecutive

daily values. Further details of IHA and EFC calculations are detailed

in the IHA 7.1 user’s manual (Nature Conservancy, 2009). Following

the approach of Hannah, Smith, Gurnell, and McGregor (2000),

median annualized hydrographs were calculated for each flow station

using the median flow for each day over all available calendar years.

Both raw and normalized (i.e. transformed between 0 and 1) hydro-

graphs were used for inductive classification. Normalized hydrographs

were also used to aid in the visualization of results across all four

clustering approaches using the GGMAP package in R (Kahle &

Wickham, 2019).

F IGURE 2 Spatial
distribution of streamflow
stations and operational dams
across the topographical Amazon
River basin (excludes the
Araguaia–Tocantins basin). Black
circles represent stations included
in the analysis, grey circles
represent stations that did not

meet data-quality criteria, and
yellow diamonds represent
operational dams (ANEEL, 2019;
RAISG, 2012). Major sub-
catchments are shaded based on
stream gauging density (stations
per tributary length, based on
3rd- to 10th-order streams).
Mainstem, tributary, and digital
elevation model (DEM) layers
were obtained from Oak Ridge
National Laboratory (Mayorga,
Logsdon, Ballester, &
Richey, 2012)
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2.3 | Streamflow classification

Inductive classification was performed using both annualized hydro-

graphs and derived IHA and EFC parameters (Figure 1). First, flow

classification was performed using all 67 IHA/EFC parameters (hereaf-

ter referred to as IHA:All) and then repeated using only parameters

that were independent of magnitude (IHA:MI; Tables 3 and 4). Next,

classification was performed on raw MAHs (MAH:Raw) and repeated

using normalized hydrographs (MAH:Normalized). Clustering using

both flow magnitude-inclusive and flow magnitude-independent

approaches was intended to account explicitly for the influence of

magnitude in driving flow regime while also elucidating other charac-

teristics of the flow regime.

For each dataset, streamflow stations were grouped into classes

using hierarchical clustering (Haaf & Barthel, 2018), which clusters the

most similar station groups until all groups are connected in a nested

structure, often presented as a dendrogram (Olden et al., 2012). The

method of Ward (1963) was applied to establish groups based on a

minimum variance criterion and the gap statistic was used to select

the optimal number of classes (Auerbach et al., 2016; Tibshirani,

Walther, & Hastie, 2001). The gap statistic was applied to select a par-

simonious number of classes that minimized variance within each

class. The gap statistic value is represented as the difference between

intragroup variation at class k if there was no significant difference in

variation across group members (null distribution) and the actual intra-

group variation when linked (Tibshirani et al., 2001). When all

TABLE 3 Indicators of hydrologic alteration (IHA) parameters

Magnitude of monthly

flow conditions

Magnitude/duration of annual

extreme flow conditions

Timing of annual

extreme flows

Frequency/duration of

high/low pulses

Rate/frequency of

hydrological changes

January 1-day min. Date of max. Low pulse count Rise rate

February 3-day min. Date of min. Low pulse duration Fall rate

March 7-day min. High pulse count No. of reversals

April 30-day min. High pulse duration

May 90-day min.

June 1-day max.

July 3-day max.

August 7-day max.

September 30-day max.

October 90-day max.

November No. of 0-flow days

December Baseflow index

Note: Italicized parameters were included in the flow magnitude-independent classification. Further details are available from Nature Conservancy (2009).

TABLE 4 Environmental flow component (EFC) parameters

Magnitude of monthly low
flows Extreme low flows High flow pulses Small floods Large floods

January Frequency of extreme low

flows

Frequency of extreme high

flows

Frequency of small

floods

Frequency of larger

floods

February Duration of low flows Duration of high flows Duration of small floods Duration of large floods

March Peak flow Peak flow Peak flow Peak flow

April Date of min. flow Date of peak flow Date of peak flow Date of peak flow

May Rise Rate Rise Rate Rise Rate

June Fall Rate Fall Rate Fall Rate

July

August

September

October

November

December

Note: Italicized parameters were included in the flow magnitude-independent classification. Further details are available from Nature Conservancy (2009).
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standard deviations are larger than the computed gap statistics, k is

set to 1. Conceptually, this value determines the inflection point

where an increase in the number of classes does not lead to a signifi-

cant decrease in variation (Tibshirani et al., 2001).

To assess within-group hydrological similarity, the correlation

among annualized hydrographs within each cluster was quantified

across the four sets of results. To do so, the normalized cross cor-

relation (NCC) was calculated for each set of clusters (Iglesias &

Kastner, 2013), taken as the station-weighted average among all

pairwise correlations in a given class. To assess the strength of a

set of classes, the Jaccard Index (JI) was used, which varies from

0 to 1, with higher values indicating a greater likelihood that a sta-

tion belongs to its assigned class, based on repeated sampling. The

JI was used as a measure of homogeneity across multiple boot-

strap iterations (B = 100) of each resulting classification (Auerbach

et al., 2016; Hennig, 2014). Although MAH-based classifications

did not use derived IHA/EFC parameters, selected parameters were

summarized across all classes in each of the four methods for

comparison.

Following the approach of Olden and Poff (2003), a principal

components analysis (PCA) was applied as a supplementary analysis

to identify IHA parameters that described primary sources of variation

among streamflow classes. Within each PCA, it was assumed that for

any randomly distributed dataset, the expected contribution of all var-

iables would be equal. The actual contribution for an input dataset is

defined as the squared eigenvalue coordinate of the variable (with

respect to its PC axis) divided by the squared distances for all vari-

ables. The actual contribution was calculated for each variable (using

the FACTOEXTRA package in R; Kassambara & Mundt, 2019), providing a

ranking of the strongest drivers of classification.

2.4 | Comparison with the Global Rivers
Classification product

The derived classifications were compared with the Global River Clas-

sification (GloRiC) product from HydroSHEDS (Ouellet-Dallaire,

Lehner, Sayre, & Theime, 2019). This global dataset provides classifi-

cation at the river-reach scale (www.hydrosheds.org/page/gloric).

Classification results were compared specifically with the GloRiC

hydrological classification, which is considered an inductive classifica-

tion based on long-term average discharge and flow regime variability

modelled using WATERGAP (Döll, Kaspar, & Lehner, 2003). The GloRiC

framework includes 15 distinct hydrological classes with five levels of

magnitude (Q), very low (0.1–10 m3 s−1), low (10–100 m3 s−1),

medium (100–1,000 m3 s−1), high (>1,000–10,000 m3 s−1), and very

high (>10,000 m3 s−1), and three levels of flow variability index (V),

low (V < 2), medium (2 < V < 3), and high (V > 3). Variability is defined

as the maximum of the long-term average monthly discharge divided

by the long-term average discharge. To standardize and compare the

results from this analysis with GloRiC, an Amazon-specific GloRiC

classification was created where each flow station was assigned to a

respective GloRiC class. In cases of clear misalignment between

GloRiC river classification and station assignment, stations were

inspected and GloRiC classes reassigned to more likely adjacent river

reaches. Finally, NCC values were calculated for stations assigned to

each class in the Amazon-GloRiC classification and qualitatively com-

pared with the classification sets generated in this analysis, with

respect to spatial distribution and NCC.

3 | RESULTS

Hierarchical clustering of the four datasets yielded differences in the

optimal number of classes, station distributions within classes, and

subsequent differences in the spatial patterns of class membership.

For approaches that retained magnitude (IHA:All and MAH:Raw), sub-

stantial variation in discharge across the basin prevented convergence

to a statistically optimal number of classes (i.e. all rivers were grouped

into a single class). In contrast, the two flow magnitude-independent

datasets both converged, with six and seven classes recommended for

the IHA:MI and MAH:Normalized datasets, respectively (Figure 3).

Notably, these flow magnitude-independent approaches retained a

magnitude ‘signature’, yielding flow classes at least partly organized

by discharge (Figures 4–7; Table 5) owing to inherent collinearity

among many flow regime characteristics (Olden & Poff, 2003). To

facilitate comparison among the four approaches in the following sec-

tions, six classes were arbitrarily selected for illustrating the results

from the two magnitude-inclusive datasets. Dendrograms for all

datasets are shown in Figures S1–S4.

Table 5 presents summary statistics for all methods and

resulting classes, including IHA parameters that strongly contributed

to variation in the PCA (Figures S5 and S6). The distribution of flow

stations across classes varied widely by method, with the most

equal distributions for the flow magnitude-independent approaches

and the most unequal distribution for MAH:Raw, which had three

classes each with only three stations. Normalized cross-correlations

(NCCs) were also highest for flow magnitude-independent

approaches (with station-weighted means of 0.65 and 0.83 for IHA:

MI and MAH:Normalized, respectively), compared with flow

magnitude-inclusive approaches (with station-weighted means of

0.49 and 0.36 for IHA:All and MAH:Raw, respectively). Table 5 also

shows a consistent trend of decreasing mean elevation and number

of reversals, and increasing stream order, 90-day maximum, and rise

rates, with increasing class number. This pattern suggests a strong

physiographical driver of class membership, with class 1 generally

representing higher-elevation, lower-magnitude streams and class 6

representing large, lowland rivers. Of note, a trend from low- to

high-magnitude mean class discharge (characterized here as 90-day

maximum) was maintained for both flow magnitude-inclusive and

flow magnitude-independent datasets. There was a large variation in

the timing of flow minima and maxima (e.g. maximum flow dates

ranging from day 62 to day 180 and minimum flow dates ranging

from day 37 to day 317 across classes and approaches), despite the

relatively low contribution of explicit timing-based variables in PCA

loadings (Figures S5 and S6).
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F IGURE 3 Gap statistic
determination for all classification
approaches. MAH:Normalized
and IHA:MI were partitioned into
six and seven classes, respectively
(denoted by *); IHA:All and MAH:
Raw did not converge to an
optimal class number

F IGURE 4 Classification results for magnitude-inclusive indicators of hydrologic alteration parameters (IHA:All). Normalized hydrographs are
included for each class, denoted by ‘N’. DOY refers to calendar day of the year. Classes are numbered from lowest to highest maximum within-
class discharge. Geographically coherent flow regime clusters include class-1 stations (light blue) in the highest-elevation regions of the
Colombian and Ecuadorian Amazon (>1,000 m a.s.l.), class-3 stations (yellow) in the Peruvian and Bolivian Amazon, and class-5 and -6 stations
(dark blue and turquoise) along the Amazon and major tributary mainstems (e.g. the Madeira, Tapajos, and Solimoes)
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Figures 4 and 5 present median annualized hydrographs and spa-

tial distribution of flow classes for the two IHA-based approaches;

MAH-based results are summarized in Figures 6 and 7. For each pair

of hydrographs, the upper panel shows raw MAHs and the bottom

panel provides normalized MAHs to aid in visualization. It is important

to reiterate that Figures 4–7 represent unique hierarchical classifica-

tions using specific input datasets (i.e. 67 or 29 IHA parameters in

Figures 4 and 5 and 365 median daily flow values from raw and nor-

malized MAHs in Figures 6 and 7). Taken together, these figures illus-

trate differences in hydrograph magnitude, seasonality, and flashiness

(i.e. short-term flow variance, rate of change, and number of reversals)

across classes and between methods. In general, flashiness was

highest in lower-magnitude, class-1 and -2 streams and decreased

with class number (associated with increasing stream order, decreas-

ing elevation, etc.). Classes were also aligned with trends in flow

timing, with flow maxima that ranged from February (e.g. class 3 in

Figures 4 and 5) to July (e.g. class 2 in Figure 5). To further illustrate

this seasonal timing gradient, the mean dates of flow maxima are

presented in Figure 8, showing a bimodal distribution of flow maxima

in February/March (south of the mainstem Amazon), June/July (north

of the mainstem), and very rarely between August and December in

higher-elevation upland rivers with relatively low seasonal variation.

Differences in the number of stations per class (e.g. many versus few

stations in IHA:MI class 2 versus class 3, respectively; Figure 5) and

relative within-class MAH similarity (e.g. low versus high in those

same classes) were also evident and align with the statistics listed in

Table 5.

Notably, classes developed using the two flow magnitude-

independent approaches (Figures 5 and 7) included streams with a

very wide range of flows. For instance, the 48 stations in class 7 of

the MAH:Normalized approach had very strongly correlated MAHs

(NCC = 0.86) despite spanning four orders of magnitude (Figure 7). In

other words, flow magnitude-independent approaches were success-

ful at grouping together stations with similar hydrograph shapes but

did not strongly differentiate ‘small’ and ‘large’ rivers. Not surpris-

ingly, flow classes for the flow magnitude-inclusive approaches

F IGURE 5 Classification results for flow magnitude-independent indicators of hydrologic alteration parameters (IHA:MI). Normalized
hydrographs for each class are denoted by ‘N’. DOY refers to calendar day of the year. Classes are numbered from lowest to highest maximum
within-class discharge. Geographically coherent flow regime clusters include class-1 stations (light blue) in the highest-elevation regions of the
Colombian and Ecuadorian Amazon (>1,000 m a.s.l.), class-4 stations (green) across the northern Amazon (500–1,000 m), and class-6 stations
(purple) along the Amazon and major tributary mainstems (e.g. the Madeira, Tapajos, and Solimoes)
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(Figures 4 and 6) maintained much clearer separation by flow magni-

tude, but with small membership classes required to accommodate

high-flow stations. Although potentially useful for separating large

from very large rivers, this division drove large class memberships and

low self-similarity for the remaining stations, limiting ecohydrological

interpretation without exploring lower-level dendrogram branches.

Further descriptions of each method and class and their geographical

distributions across the basin are provided in Sections 3.1 and 3.2.

3.1 | IHA-based classification schemes

Using the IHA:All dataset, classes generally represented a continuum

from low to high stream order, with the exception of the very large

class 4 (Figure 4). With increasing class number, there was also a

steady decrease in the average number of reversals (from n = 162 in

class 1 to n = 19 in class 6) and decrease in mean elevation. Class-6

stations (n = 6) had the largest average flow magnitudes (105 m3 s−1)

and were located along the mainstem of the Amazon (Figure 4). These

stations were characterized by high rise rates, low numbers of rever-

sals, and flow maxima around June. Class-5 stations (n = 21) had the

next largest average flow magnitude (104 m3 s−1), and were distrib-

uted along major tributaries such as the Madeira, Solimoes, and Purus

rivers. The emergent properties of relatively smaller rivers were less

clear, although some salient features are notable. Classes 2 and 4

were both large and heterogeneous, with low within-group similarity

(Table 5). Class 4 had the highest class membership (n = 207) and was

distributed widely across the basin, with a wide range of flow magni-

tudes and seasonal flood timing. This within-class variation is apparent

in the cluster dendrogram (Figure S1), which indicates at least two

major ‘sub-classes’. Class-3 stations (n = 13) had a flow magnitude of

approximately 104 m3 s−1, and were mostly distributed across the

Peruvian and Bolivian Amazon. Classes 1 (n = 48) and 2 (n = 109) both

had lower flow magnitudes (102 m3 s−1) and were differentiated from

each other by hydrograph timing (maxima in June versus April, respec-

tively) and flashiness (e.g. more reversals in class 1). Class-2 stations

were distributed along higher-elevation regions of the south-western

and northern Amazon, whereas class-1 stations were concentrated in

F IGURE 6 Classification results for raw mean annual hydrographs (MAH:Raw). Normalized hydrographs for each class are denoted by ‘N’.
DOY refers to calendar day of the year. Classes are numbered from lowest to highest maximum within-class discharge. Geographically coherent
flow regime clusters include class-3 and -5 stations (yellow and purple) across southern and south–central regions, class-4 stations (green) across
the north-central Amazon, and class-6 stations (turquoise) along the Amazon/Solimoes mainstem
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the highest-elevation regions of the Colombian and Ecuadorian

Amazon.

Excluding flow magnitude parameters from the IHA-based analy-

sis (IHA:MI) yielded a more even distribution of stations across classes

(Table 5). As with IHA:All, the average class elevation decreased and

stream order generally increased across classes, although differentia-

tion in seasonality among classes was more apparent (Figure 5). Class 6

(n = 27) retained the large mainstem Amazon stations from IHA:All

but added stations along the mainstems of major tributaries (Madeira,

Tapajos, and Solimoes), the (relatively) lower flow magnitudes of

which (104 versus 105 m3 s−1) had separated these stations in the

IHA:All analysis. In addition to high flow magnitudes (104 m3 s−1),

these stations had high rise rates and low numbers of reversals. IHA:

MI classes 3, 4, and 5 all had relatively similar average flow magni-

tudes (103 m3 s−1), high NCC values, and spatially coherent distribu-

tions. IHA:MI class-3 stations (n = 9) across Peruvian and Bolivian

upland rivers had high rise rates and relatively flashy behaviour,

resembling class 3 in the IHA:All analysis. Class-4 stations (n = 46)

were characterized by a mid-annual wet season and a relatively low

number of reversals and were clustered conspicuously across the

northern Amazon. Classes 2 and 5 had the highest number of stations

(n = 126 and 149, respectively), with stations distributed across the

entire basin (Figure 5). Class-5 stations shared a generally sinusoidal

MAH, whereas class-2 stations were flashier and more heteroge-

neous. IHA:MI class-1 stations (n = 47) overlapped almost completely

with IHA:All class-1 stations (n = 48), representing the highest-eleva-

tion, low-magnitude, flashy rivers of the Colombian and Ecuadorian

Amazon.

3.2 | Hydrograph-based classification schemes

Classification using daily values of the mean annual hydrograph

(MAH:Raw) was overwhelmed by the enormous range in flow magni-

tudes across the dataset, leading to the largest disparity in class num-

ber (from three to 323 stations; Table 5). The three highest-

F IGURE 7 Classification results for normalized mean annual hydrographs (MAH:Normalized). Normalized hydrographs for each class are
denoted by ‘N’. DOY refers to calendar day of the year. Classes are numbered from lowest to highest maximum within-class discharge.
Geographically coherent flow regime clusters include class-1 and -2 stations (light blue and red) in the highest-elevation regions ringing the basin,
class-3 and -5 stations (yellow and dark blue) across southern and south–central regions, class-4 stations (green) across the northern Amazon, and
class-6 and -7 stations (turquoise and orange) along the Amazon/Solimoes mainstem and north–central region
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TABLE 5 Mean statistics for all classifications

Class 1 2 3 4 5 6

IHA:All No. of stations 48 109 13 207 21 6

Jaccard index 0.57 0.42 0.61 0.66 0.70 0.82

NCC (mean = 0.49) 0.49 0.58 0.66 0.40 0.92 0.98

Stream order 4.0 4.8 7.2 5.3 7.0 9.7

Elevation (m a.s.l.) 1,172 725 253 157 83 14

Flow magnitude (m3 s−1) 218 238 5,677 2,145 26,491 138,025

Date flow minima 105 243 245 226 269 315

Date flow maxima 180 85 63 111 105 160

Rise rate 53.0 37.1 503 52.1 386 633

No. of reversals 162 102 106 54 50 19

Class 1 2 3 4 5 6

IHA:MI No. of stations 47 149 9 46 126 27

Jaccard index 0.66 0.49 0.55 0.76 0.62 0.67

NCC (mean = 0.65) 0.62 0.43 0.70 0.88 0.82 0.72

Stream order 4.0 4.8 7.4 5.5 5.3 8.0

Elevation (m a.s.l.) 1,157 573 276 172 167 72

Flow magnitude (m3 s−1) 223 470 4,923 3,571 2,330 50,227

Date flow minima 101 256 265 37 274 278

Date flow maxima 176 94 62 175 86 111

Rise rate 54 38 583 103 42 456

No. of reversals 162 93 116 65 46 46

Class 1 2 3 4 5 6

MAH:Raw No. of stations 323 57 15 3 3 3

Jaccard index 0.96 0.74 0.77 0.71 0.91 0.92

NCC (mean = 0.35) 0.30 0.39 0.94 0.97 0.99 0.98

Stream order 4.8 6.3 7.3 9.0 9.3 10.0

Elevation (m a.s.l.) 508 127 84 73 22 7

Flow magnitude (m3 s−1) 478 7,817 23,977 50,342 105,762 170,288

Date flow minima 220 196 270 267 312 317

Date flow maxima 108 121 101 127 169 152

Rise rate 39.9 206 402 456 433 834

No. of reversals 89 48 56 24 9 28

Class 1 2 3 4 5 6 7

MAH:Normalized No. of stations 52 33 102 60 83 26 48

Jaccard index 0.66 0.68 0.67 0.81 0.73 0.75 0.88

NCC (mean = 0.83) 0.40 0.81 0.93 0.83 0.95 0.90 0.86

Stream order 4.7 4.5 5.3 4.9 5.5 5.7 5.6

Elevation (m a.s.l.) 1,384 1,295 210 324 131 110 79

Flow magnitude (m3 s−1) 131 494 1,403 2,922 3,862 13,448 19,312

Date flow minima 252 84 258 66 278 259 271

Date flow maxima 109 180 60 178 87 96 140

Rise rate 38.3 51.6 88.1 89.7 96.3 165 115

No. of reversals 119 134 76 97 53 44 59

Note: NCC = normalized cross-correlation. Flow magnitude refers to the mean value of median annualized hydrographs within each class. Indicators of

hydrologic alteration (IHA): IHA:All, classification including all parameters; IHA:MI, flow magnitude-independent classification; MAH:Raw, median

annualized hydrograph raw classification; MAH:Normalized, median annualized hydrograph normalized classification. Stream order determined according

to Pfafstetter (1989).
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magnitude flow classes (104–105 m3 s−1) each had only three mem-

bers, representing high-order, lowland stations (Figure 6). Among

these groups, class differentiation was driven by differences in flow

magnitude (increasing with distance downstream), number of rever-

sals (lowest for mid-reach class-5 stations), and flood-pulse timing

(earliest for class-4 stations near the Brazil–Colombia–Peru border).

Class-3 stations (n = 15) also had relatively large flow magnitudes

(104 m3 s−1) but with earlier flow maxima than classes 4–6 and were

located primarily on the Madeira River (Figure 6). Classes 1 (n = 57)

and 2 (n = 323) were distributed across the Amazon and represented

a wide variety of flow regime characteristics, including early and mid-

annual wet seasons, a range of (relatively low) flow magnitudes and

rise rates, and (relatively high) number of reversals. Additional, unclas-

sified flow regime structure within these classes is apparent in the

‘noisy’ MAHs in Figure 6, low NCC values (Table 5), and MAH:Raw

dendrogram (Figure S3).

In sharp contrast, classification using the MAH:Normalized

dataset produced seven classes with the most even station distribu-

tion (Table 5). Although classes were distributed across a clear eleva-

tion gradient, stream order did not vary correspondingly. This

suggests less scale-dependent station clustering, with variance in

timing and rate of change more strongly driving classification. For

example, wet/dry-season timing varied coherently among classes,

with class 3 (flow maxima/minima in February/September), class 5

(flow maxima/minima in March/October), and class 6 (flow maxima/

minima in April/September) representing earlier wet seasons. Later

wet-season onset was associated with class 1 (flow maxima/minima in

late April/September), class 7 (flow maxima/minima in May/

September), class 4 (flow maxima/minima in June/early March), and

class 2 (flow maxima/minima in May/September). No other method

yielded such clear differences in flow timing among classes. Class-7

stations (n = 48) had the largest average flow magnitudes (104 m3 s−1)

and were situated both along the Amazon mainstem as well as lower-

order rivers in the northern and north-eastern Amazon (Figure 7).

Class-6 stations (n = 26) were differentiated by an earlier flood peak,

the highest rise rates, and the lowest number of reversals, although

classes 5–7 were all relatively ‘un-flashy’. Class-6 stations were

located in a tight cluster in the west-central basin, largely on the Jutai,

Solimoes, Jurua, and Itui rivers. Classes 3–5 shared a similar order of

flow magnitude (103 m3 s−1), but classes 3 (n = 102) and 5 (n = 83)

had an early-season flood peak and class-4 stations (n = 60) had later

flow maxima. Class-3 stations were located across a broad swathe of

the southern Amazon and partly overlapped with class-5 stations in

the Madeira basin. Class-4 stations (n = 60) were consistently located

on mid-elevation rivers in the northern Amazon (Figure 5). Classes 1

and 2 had the smallest average discharge (102 m3 s−1) and highest

number of reversals. Class-2 hydrographs shared a coherent mid-

season peak, whereas class-1 stations were more heterogeneous.

These high-elevation stations ring the basin, with class-2 stations in

Ecuador and northern Brazil and with class-1 stations in Peru, Bolivia,

F IGURE 8 Timing of flow maxima
across all stations in the study
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and southern Brazil (Figure 7). Table S2 provides an overview of dif-

ferences among approaches and resulting classes.

3.3 | Comparison with GloRiC

The spatial distribution of rivers based on their assigned GloRiC class

is shown in Figure 9. Across 15 potential combinations of flow magni-

tude and variability groups, the 404 stations analysed here cor-

responded to 12 GloRiC classes. GloRiC station classification aligned

strongly with stream order, with stations recording very high flow

magnitudes and medium-to-high flow variation located at outlets of

the Madeira, Solimoes, Tapajos, Negro, and Caquetá rivers. Stations

with very low flow magnitudes were generally located in the Andean

Amazon, corresponding to class-1 and -2 stations within the frame-

work. Overall, the categorical, log-based streamflow classifications

from GloRiC yielded a relatively even station membership across clas-

ses (Figures S7–S9; Table S3), although with substantial within-group

variation in MAH. For the 12 classes in the GloRiC database, within-

class NCC values ranged from 0.29 to 0.99, and the station-weighted

average NCC was 0.42, considerably lower than the flow magnitude-

independent methods, despite having twice as many classes. Notably,

the GloRiC classes did not show apparent trends in timing, which is

reasonable given that intra-annual temporal parameters were

excluded from the classification. However, the combination of log-

based flow magnitude and streamflow variability thresholds from

GloRiC was successful in identifying rivers with unique hydrological

behaviour. Specifically, the Paraiso and Abapo stations in the Bolivian

Amazon (identified as class 1 or 2 in this analysis across all methods)

were the only stations that corresponded to the medium flow magni-

tude/very high flow variance class (Figure S7), thus identifying two

rivers that are surprisingly flashy given their high flow magnitudes.

4 | DISCUSSION

To the best of our knowledge, this study represents the first effort to

classify Amazonian rivers using observed streamflow data. Our analy-

sis characterized patterns in streamflow variation to capture ecologi-

cally relevant flow regime classes across the Amazon basin, using a

classification framework that distinguished flow regime classes

according to streamflow magnitude (in flow magnitude-inclusive

approaches), frequency, timing, and rate of change to produce classes

with the highest possible within-class hydrological similarity and

between-class difference. This study highlights the wide range and

geographical distribution of streamflow characteristics across the vast

Amazon basin, describes relationships among various streamflow

components, and connects river dynamics to regional and global cli-

matological cycles. Building from a set of 404 flow gauging stations,

this inductive classification yielded a parsimonious set of six and

seven hydrological classes using a flow magnitude-independent sub-

set of IHA parameters and normalized mean annual hydrographs,

respectively. For all methods, class membership was strongly associ-

ated with flow elements related to timing, frequency, and rate of

F IGURE 9 Global River Classification

(GloRiC) hydrological classification for
observed streamflow stations. The GloRiC
framework includes 15 distinct
hydrological classes with five levels of
flow magnitude (Q), very low
(0.1–10 m3 s−1), low (10–100 m3 s−1),
medium (100–1,000 m3 s−1), high
(>1,000–10,000 m3 s−1), and very high
(> 10,000 m3 s−1), and three levels of flow
variability index (V), low (V < 2), medium
(2 < V < 3), and high (V > 3) (Ouellet-
Dallaire et al., 2019). Variability is defined
as the maximum of the long-term average
monthly discharge divided by the long-
term average discharge. Modelled
discharge data in GloRiC come from the
global freshwater model WaterGAP (Döll
et al., 2003). Flow regime clusters are
strongly aligned with stream order
(e.g. stations with very high flow
magnitude and medium/high flow
variation located along the mainstems of
the Madeira, Solimoes, Tapajos, Negro,
and Caquetá rivers)
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change. Although no geographical coordinates or other proximity met-

rics were included in the classification, spatial coherence was apparent

across most classes in all methods, probably driven by inherently hier-

archical relationships among stream order, latitude, and elevation that

give rise to the flow regime (Snelder, Biggs, & Woods, 2005).

Overall, these results allow for the exploration of how ecologically

relevant streamflow characteristics vary across the Amazon and dem-

onstrate how the choice of input data drives clustering results and

subsequent ecological interpretation. For example, in the IHA:MI and

MAH:Normalized classifications (Figures 4 and 6), flow regime charac-

teristics related to timing and flashiness emerged as major drivers of

flow regime differentiation. As these classifications were very strongly

associated with hydrograph shape, specific seasonal signatures poten-

tially related to fish migration and spawning cues (Cañas & Pine, 2011;

Jiménez-Segura, Palacio, & Leite, 2010) were apparent among classes.

In contrast, for the two methods that retained flow magnitude (IHA:

All and MAH:Raw; Figures 4 and 5), classes were clearly aligned from

low to high flow magnitude, representing an upstream-to-downstream

(i.e. low-to-high stream order) gradient strongly associated with habi-

tat types and ecosystem functioning (Vannote, Minshall, Cummins,

Sedell, & Cushing, 1980). Below, we discuss the ecological significance

of these flow regime classifications, compare them with existing clas-

sifications, suggest how these results can be used in future river

research, and to guide freshwater management and conservation deci-

sions, and briefly summarize methodological considerations of the

classification approach.

4.1 | The ecohydrology of Amazonian flow
regimes

Flow regimes across the Amazon support a remarkable diversity of

aquatic ecosystem structure, function, and services (Anderson

et al., 2018; Castello & Macedo, 2016). It is thus perhaps surprising

that a limited set of six or seven flow regime classes could be used to

describe ecohydrological variation across this vast region. Although

every river reach – and indeed each year of flow within each reach –

is likely to contain unique attributes along a gradient of streamflow

behaviour, this parsimonious set of classes was statistically supported

for flow magnitude-independent datasets. The further splitting of

classes into more highly resolved groups is possible by applying a

lower clustering threshold. Following from the large body of work on

flow regime characteristics (Palmer & Ruhi, 2019; Poff et al., 2010;

Richter et al., 1996), the salient organizing features of the flow classes

identified here include flow magnitude, duration, timing, frequency,

and rate of change, in line with the original ‘natural flow regime’ con-
cept (Poff et al., 1997). These attributes characterize flow regime

behaviour and have been directly linked to aquatic species evolution

(de Assis & Wittmann, 2011) and ecological response to disturbance

(Leigh, Stewart-Koster, Sheldon, & Burford, 2012). Whereas both IHA

and MAH approaches reflect these five flow regime features, IHA-

based analyses are useful for directly connecting the flow metrics that

strongly influenced our classifications (Figures S5 and S6) with

established or hypothesized ecological relationships in the Amazon

(Table 6).

The strong influence of flow magnitude on Amazon ecohydrology

follows intuitively from the river continuum concept (RCC). The RCC

connects gradients in physical properties to characteristic streamflow

properties associated with a gradient of ecological processes

(Vannote et al., 1980), including maintaining riparian vegetation, habi-

tat availability for aquatic organisms, food and water availability for

fauna, predictability of water availability, access to nesting sites, and

influence on abiotic factors (Castello & Macedo, 2016). Discharge

magnitude is a key component of the flood pulse and is associated

with lateral and longitudinal connectivity through frequency and rate-

of-change parameters. The resulting spectrum of flood pulses, from

short and unpredictable headwaters to long and predictable high-

order rivers (Junk et al., 1989), were captured through both IHA and

MAH approaches, with implications for understanding patterns of

ecosystem structure and function. Magnitude-inclusive classification

schemes were able to differentiate among the largest rivers in the

Amazon lowlands (i.e. IHA:All classes 5 and 6 and MAH:Raw

classes 4–6). Despite a high degree of seasonality, these very high-

order rivers maintain strong base flows all year round and facilitate

extremely productive ecosystems (McClain & Naiman, 2008), together

with direct human services such as transportation (Domínguez, 2004).

Separating these classes when considering the diversity of Amazon

flow regimes, even if not statistically supported, may thus be impor-

tant from both an ecological and a management perspective. For flow

magnitude-independent classifications, rivers in IHA:MI classes 4–6

and MAH:Normalized classes 4–7 spanned large flow magnitude gra-

dients and are thus useful for hypothesizing how hydrological alter-

ation will affect rivers with similar flow regime ‘shapes’ along large

discharge and spatial gradients. Although flow magnitude-

independent approaches were better for identifying shared flow

regime characteristics in low-order streams (classes 1 and 2), in all

cases further splitting would support a more localized interpretation

of streamflow variation.

Strongly tied to mean flow magnitude, extreme flow parameters

quantify discharge maxima and minima over multiple timescales

(Tables 3 and 4). Notably, eight of the 10 strongest drivers of PCA

variation for the IHA:All dataset were extreme flow metrics (1-, 3-, 7-,

30-, and 90-day maxima, small flood peak, and May/January low

flows; Figure S5). It should be noted, however, that flow extremes are

often correlated with mean flow (Olden & Poff, 2003), especially for

high-discharge rivers. Indeed, flow extremes associated with IHA:All

classes 1–6 varied in concert with overall mean flows (e.g. 90-day

maximum and mean flows in Table 5). Ecologically, extreme events

are directly linked to floodplain inundation and the evolution of com-

munities adapted to predictable flooding (Parolin, 2012). River–

floodplain connectivity facilitates the life cycles of hundreds of fish

species (Anderson et al., 2018; Barthem et al., 2017; Correa &

Winemiller, 2018; Miranda-Chumacero, �Alvarez, Luna, Wallace, &

Painter, 2015), migratory fish passage, and speciation at the whole-

basin scale (Lowe-McConnell, 2011; Oberdorff et al., 2019). Extreme

high and low flows are also linked to sediment erosion and deposition,
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forming thousands of kilometres of river habitat (Constantine, Dunne,

Ahmed, Legleiter, & Lazarus, 2014), especially in high-discharge

white-water rivers (Espinoza Villar et al., 2013), such as the Madeira,

Solimoes, Purus, and Caquetá-Japura. Maintenance of these extreme

highs and lows, and the longitudinal and lateral connectivity that they

support, is thus fundamental for conservation and biodiversity protec-

tion. Critically, the connectivity in some basins (e.g. Beni, Mamore,

Marañón, and Ucayali) is vulnerable to alteration from existing and

proposed dams (Anderson et al., 2018; Finer & Jenkins, 2012), posing

a risk to river biodiversity and highlighting the importance of acknowl-

edging flow extremes in Andes–Amazon conservation efforts (Farias

et al., 2019).

We found streamflow timing (i.e. wet/dry-season onset) to be

one of the most differentiable and interpretable aspects of flow

regime classification across the Amazon, especially for the two flow

magnitude-independent approaches (Figures 5 and 7; Table 5). In par-

ticular, classes 2–7 in the MAH:Normalized classification scheme all

had relatively similar MAH shapes but were differentiated by

wet/dry-season timing (among other flow attributes). The bimodal dis-

tribution of seasonality (assessed through date of flow maxima) on

either side of the mainstem (Figure 8) is attributed to latitude, high

rainforest evapotranspiration rates (‘recycling of precipitation’), and
global climate patterns, with additional effects from basin biophysical

features such as slope, land cover, soils, and river–floodplain interac-

tions (Fleischmann et al., 2016). The approximately 6,000-m elevation

gradient of the basin also plays a strong role in driving flow timing,

with higher-elevation rivers in the Peruvian and Ecuadorian Amazon

more heavily influenced by sporadic storm events compared with

strongly seasonal precipitation signals (e.g. contrast class 1 with all

other classes for MAH:Normalized in Figure 7). Streamflow timing is

linked to rates of biogeochemical cycling, riparian productivity, and

the spawning and migration of myriad fish species (Yarnell

et al., 2020). For example, floodplain cichlids (Symphysodon spp.) gen-

erally spawn at the onset of the wet season following flow and water-

quality cues (Crampton, 2008). Directional changes in streamflow

timing in the Amazon may be driven by climate change (Arias

et al., 2020, Guimberteau et al., 2013) or direct flow manipulation

(Timpe & Kaplan 2017), and if they occur more quickly than species

can adapt, can lead to local species extinction (Hwan &

Holmes, 2020).

The frequency of high and low pulses drives the exchange of

materials between the river and the floodplain, structuring biotic

TABLE 6 Ecologically relevant flow metrics across the Amazon basin

Metric Significance Ecological relevance

90-day maximum* Average maximum

magnitude over 90-day

(seasonal) period

Shifts in flow maxima over a seasonal time interval, through drought and flooding

conditions, are linked to the mortality of trees in the Amazon and the resulting

changes in forest structure and function (Nepstad, Tohver, David, Moutinho, &

Cardinot, 2007), soil moisture stress, and anaerobic stress (Parolin, 2012)

30-day maximum* Average maximum

magnitude over 30-day

(monthly) period

Roughly corresponds to the monthly interval of river peak flows, aligning with rates of

sediment and nutrient delivery (Dunne et al., 1998), and increased spawning of

catfishes (Siluriformes: Pimelodidae) along Andean–Amazon gradient (Cañas &

Pine, 2011)

Small flood peak* Average magnitude of

stream flow during small

floods

Migration and spawning cues for migratory fish, including the catfish family

Siluriformes: Pimelodidae (Cañas & Pine, 2011), connecting lentic and lotic habitats

and facilitating the movement of Arapaima gigas (Castello, 2008)

Rise rate** Average of differences in

streamflow increases

between consecutive

days

Rising water levels in the Middle Solimões River act as ‘a natural barrier’ between

floodplain lakes and the Solimões River, thereby structuring fish passage and

assemblage (Sousa & Freitas, 2008). Work in temperate basins provides evidence of

fish stranding, destabilization of sediment accumulation, disruption of riparian plant

and animal life cycles (Richter et al., 1996), and the failed establishment and

recruitment of seedlings (Renöfält, Jansson, & Nilsson, 2010)

No. of reversals** Average number of

reversals between rising

and falling daily flows

Studies in temperate basins provide evidence of fish stranding, destabilization of

sediment accumulation, disruption of riparian plant and animal life cycles (Richter

et al., 1996), weakening of river banks, and loss of vegetation (Renöfält et al., 2010).

These ecohydrological relationships may also be observed in tropical basins and

further studies in the Andean–Amazon gradient are needed

High flow rise and fall

rates**

Average rise/fall rates

during high flow events

High flow rise and fall rates have been included in environmental flow assessments,

although as yet no studies have been found that have connected high flow rise and

fall rates with an ecological response in the Amazon

High pulse count** Average number of high

pulses

Research in temperate basins relates a high pulse count to soil moisture stress,

anaerobic stress, the availability of floodplain habitat, and nutrient and organic-

matter exchange (Richter et al., 1996), and identifies decreased high pulse count as a

driver of the long-term dehydration of riparian habitat and dominance of terrestrial

ecosystems (Poff & Zimmerman, 2010). The study of such relationships in the

Andean-Amazon and other tropical basins is needed

Note: These parameters were the strongest drivers of streamflow classification from the IHA:All (*) and IHA:MI (**) classifications.
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relationships along the entire river (Junk et al., 1989). High flow fre-

quency and extreme low-flow frequency were influential in both the

IHA:All and IHA:MI classifications (Figures S5 and S6). Across

methods, the lowest extreme low-flow frequencies and highest high-

flow frequencies were bookended by MAH:Raw class 1 and IHA:MI

class 6 (Data S2), representing the overall low- to high-flow gradient.

The maintenance of these hydrological indicators is tied to the main-

tenance of channel geomorphology, area of floodplain habitat, and

food-web complexity (Hayes et al., 2018). For example, many of the

Amazon’s large catfish (Siluriformes: Pimelodidae) rely on the predict-

able frequency (and timing) of flow events for spawning and the trans-

port of larvae (Cañas & Pine, 2011). The flood-pulse concept (Junk

et al., 1989) asserts that low-order streams such as those in the high

Andes (e.g. IHA:MI class 1; Figure 5) are characterized by short and

generally unpredictable flood pulses, with species adapted to survive

quickly changing riparian zones (Godoy, Petts, & Salo, 1999;

Larson, 2019; Parolin, 2012; Polato et al., 2018). Conversely, higher-

order streams (e.g. those in IHA:All classes 5 and 6; Figure 4) aggre-

gate in incoming tributaries, minimizing the influence of precipitation

and displaying more predictable interannual flood frequencies. The

transition from high Andes and cordillera ecosystems to piedmont

(piedmonte) and floodplain (llanura) ecosystems is thus accompanied

by a decreasing flood-pulse frequency and increasing streamflow pre-

dictability; this trend was generally well captured by three of the four

classification approaches (IHA:All, IHA:MI, and MAH:Normalized;

Figures 4, 5, and 7).

The rate and frequency of hydrological changes reflect the day-

to-day hydrological predictability experienced by aquatic flora and

fauna, and are quantified by rise rates, fall rates, and the number of

reversals (Table 3). For flow magnitude-independent approaches, river

classification was structured by rate-of-change and frequency param-

eters (in IHA:MI) and by frequency and timing (in MAH:Normalized).

Reversals in particular were a useful indicator that helped differentiate

classes along a gradient from ‘flashier’ upland streams to ‘smoother’
floodplain rivers, to which aquatic flora and fauna have adapted their

unique life-cycle histories. Ecologically, less flashy rivers with more

predictable dry-season base flows (e.g. IHA:MI classes 5 and 6) mini-

mize the drought stress that is faced by organisms in flashier, upland

rivers (i.e. IHA:MI classes 1 and 2). As drought risk in the region inten-

sifies (Marengo & Espinoza, 2016), more studies are needed to deter-

mine the ecological effects of drought on susceptible streams in the

Andean Amazon; recent studies in Andean headwater streams dem-

onstrate how steep topographical gradients exert a significant role in

structuring functional, taxonomic, and phylogenetic community

composition (Larson, 2019).

4.2 | Alignment with existing Amazon
classifications

By emphasizing the flow regime, this classification complements

global-scale environmental classifications such as the Freshwater

Ecoregions of the World (FEOW; Abell et al., 2008). FEOW contains

11 ecoregions in the topographical Amazon (Amazonas Guianan

Shield, Rio Negro, Western Amazon Piedmont, Ucayali Piedmont,

High Andes, Mamore, Guapore, Madeira Brazilian Shield, Tapajos-

Juruena, and Xingu) and presents several ecoregions that overlap with

our hydrological classes (e.g. Amazonas Lowlands, corresponding to

large floodplain rivers in higher-order classes across methods;

Figures 4–7). Ecologically, these river basins contain seasonally inun-

dated and flooded forests (várzea and igapó), swamp forests, terra

firme forests, and floating meadows (Abell et al., 2008). Classes 1 and

2 in both IHA classifications correspond well to Andes–Amazon rivers

(FEOW:Amazonas High Andes), including the Caquetá, Putomayo,

Napo, Beni, and Marañón. These rivers are marked by fast-flowing

streams with much lower base flows. The Andes are considered one

of the most diverse habitats on earth, with ecoregions subdivided into

submontane forest (700–2,000 m a.s.l.), montane forest

(2,000–2,500 m a.s.l.), cloud forest (2,500–3,500 m a.s.l.), and puna

(3,500+ m a.s.l.) (Abell et al., 2008). Although none of our classification

schemes fully captured differences across this elevation gradient

(partly owing to the availability of flow data), the MAH:Normalized

approach best identified unique flow regime characteristics for high-

elevation rivers (Figure 7).

Our classification also complements the GloRiC (Ouellet-Dallaire

et al., 2019), which used modelled hydrological data to classify flow

regimes. The observed discharge data presented in this study provides

an opportunity to extract signatures that may not be as easily

extracted or validated in modelled data. It should be noted that

GloRiC authors selected magnitude and variation as driving features

of flow variation after analysing hydrological variation at the global

scale. This intentional exclusion of seasonality at least partly accounts

for lower within-class MAH similarity for GloRiC classes (i.e. lower

NCC values). A more informative characterization of GloRiC classes is

seen in Figure S7, indicating the strong correspondence of observed

median discharge to GloRiC classes. Our flow magnitude-inclusive

schemes generally corresponded to GloRiC classes (Figures 4–6 and

S9), and flow magnitude-independent schemes revealed additional

variability in frequency and rate-of-change parameters (Figures 5 and

7). In short, our results accord with the GloRiC characterization of

magnitude across the basin and add further details about variance in

other ecologically relevant flow metrics (timing, frequency, and rate of

change).

4.3 | Application and utility of derived flow
classifications

This analysis supports the prioritization of aquatic conservation and

monitoring efforts across the Amazon by synthesizing the spatio-

temporal availability of Amazonian flow data, quantifying regions of

shared and divergent flow regime characteristics and identifying

major drivers of flow regime classes. The monitoring and forecast-

ing of streamflow dynamics across the entire basin has been identi-

fied as a primary research and management need (Junk, 2013), and

the database accompanying this article provides observed discharge
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time series, IHA/EFC metrics, hydrographs, additional metadata

(Data S2), and classifications for 404 Amazon rivers, publicly avail-

able and accessible through HydroShare (https://www.hydroshare.

org). These results also improve our understanding of the natural

flow regime at the whole-basin scale, supporting the development

of more regionally specific analyses of environmental flows. Nota-

bly, this effort accomplishes the first two steps of the ELOHA

framework (Poff et al., 2010): assembling a database of daily

streamflow hydrographs across the basin over a period that suffi-

ciently captures climate variability; and classifying river segments

using ecologically relevant flow metrics. These two steps set the

stage for quantifying hydrological alteration in fluvial systems using

a set of streamflow statistics strongly connected to ecological func-

tion (Poff et al. 2010).

Although the development of river- or reach-specific environ-

mental flows programmes require more site-specific analysis, the clas-

sifications produced here revealed generally cohesive spatial

distributions of classes, driven by magnitude and duration parameters

in flow magnitude-inclusive schemes and highlighting variation in

timing, frequency, and rate-of-change parameters for flow magnitude-

independent approaches. In particular, the classifications presented in

this analysis provide four different lenses through which flow alter-

ation may be assessed. IHA:MI or MAH:Normalized classifications

enable an analysis of change among stations that vary in flow magni-

tude yet share similarities in flood frequency, duration, and timing. For

example, the range of median annual hydrographs for rivers in IHA:MI

class 6 and MAH:Normalized classes 6 and 7 connote ecological simi-

larities in the timing and duration of river–floodplain connection

across streams of vastly different sizes (Figures 5 and 7; Data S2).

Whereas many studies have sought to connect flow magnitude-driven

flow metrics and ecological response, less attention has been given to

flow magnitude-independent metrics, especially in the Amazon basin.

Alternatively, IHA:All and MAH:Raw classifications (Figures 4 and 6)

provide relatively straightforward, flow magnitude-driven classes that

also reveal other flow magnitude-associated flow regime attributes

(e.g. flashiness and base flow).

To be useful in guiding river management in the context of

hydrological alteration, data compilation and streamflow classifica-

tion must be coupled with the development of flow–ecology rela-

tionships. There is a growing body of work on the impacts of

hydrological alteration from climate (Ahlström et al., 2017; Arnell &

Gosling 2013; Davidson et al., 2012), land-use, and land-cover

change (Coe, Latrubesse, Ferreira, & Amsler, 2011; D'Almeida

et al., 2007; Levy, Lopes, Cohn, Larsen, & Thompson, 2018; Lima

et al., 2014), and dams (Timpe & Kaplan, 2017; Valle &

Kaplan, 2019), in the Amazon. Given the huge diversity of flora

and fauna and ecological dynamics that are linked to freshwater

ecosystems, there is a pressing need for additional field studies to

determine flow–ecology relationships across natural streamflow

regimes in the tropics, including the Andean Amazonian (Wohl

et al., 2012), where steep gradients in topography, geology, and

soils drive sediment and nutrient transport, ecosystem productivity,

and the dependence of migratory species on riverine connectivity

(Anderson et al., 2018; Dunne et al., 1998; Encalada et al., 2019;

Finer & Jenkins, 2012; McClain & Naiman, 2008). For instance, an

ecological integrity index was developed in the Napo River basin

to predict river ecological integrity as a function of human distur-

bance and environmental variables, using known environmental fea-

tures to assess freshwater ecological functioning (Lessmann

et al., 2019). Overall, our analysis suggests that flow magnitude-

independent parameters are useful for distinguishing among

Amazonian hydrological regimes and thus underscores the need to

consider linkages between timing, frequency, and rate-of-change

metrics and ecological responses.

The spatial distribution of flow regimes can be used to identify

monitoring gaps and parsimoniously select representative field sta-

tions for long-term ecological monitoring, where streamflow metrics

and climate can be explicitly linked to biotic processes, biogeochemis-

try, and habitat structure (NEON, 2020). For example, Figure 2 illus-

trates a paucity of flow monitoring stations in the Ucayali River basin,

which shows a very high diversity of flow regimes for its size

(e.g. classes 2, 3, 5, and 6 in the IHA:MI; Figure 5). In contrast, the

large number of stations on the Madeira River (e.g. class 3 in MAH:

Raw) may be useful for other purposes such as infrastructure flood

forecasting, but is probably unnecessary for capturing the salient

features of Madeira River ecohydrology.

4.4 | Methodological considerations

Intuitively, differences in flow regime classifications were driven by

differences in the input data. In deriving one classification from

IHA/EFC metrics and another from dimensionless reference hydro-

graphs, the MAH:Normalized classification reflects flow regime varia-

tion in Amazon rivers either underestimated or not yet captured by a

flow metric, thus revealing variation in flow regimes based on

established ecohydrological linkages and objective evaluation of

median annualized hydrographs (Lane et al., 2018). Although each

method provides useful information about shared variance among sta-

tions, removing magnitude in the IHA:MI and MAH:Normalized

allowed the emergence of timing, frequency, and rate-of-change

parameters that formed cohesive groups (Figures 5 and 7), making

these classifications more useful for testing ecological relationships

tied to intra-annual variation. A specific benefit of the IHA:MI classifi-

cation is that it removes the ‘wash-out’ effect of exponentially distrib-

uted flow magnitude across the basin, while still reflecting

components indirectly connected to rivers with larger flow magni-

tudes (frequency and rate of change). In contrast, the MAH:Normal-

ized classification demonstrated the greatest independence from flow

magnitude and stream order, and is thus likely to be the most useful

for parsing flow regime variation with respect to flashiness, periodic-

ity, and seasonality. Overall, the IHA:All approach may be most useful

for holistically integrating multiple hydrological indicators across such

a wide area and contextualizing primary components of the flow

regime at the basin scale (Figure S5). It is important to reiterate that

the two flow magnitude-inclusive approaches did not yield a specific,
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statistically supported number of classes, and the selection of six clas-

ses presented here was arbitrary; further insight could be gleaned by

splitting these flow classes into more highly resolved groups based on

their dendrograms. For instance, the further partitioning of IHA:All

class 2 into six classes reveals additional shared flow regime charac-

teristics within sub-groups that vary in magnitude, rise rate, and date

of flow maxima (Figure S10; Table S4). Generally, all classes (with

more than one member) may be resolved into more detailed sub-

classes to reflect shared and diverging flow characteristics within a

larger class at smaller scales.

Both flow magnitude-independent methods extracted ecologi-

cally relevant characteristics from the flow regime using a similar num-

ber of classes (six versus seven), despite very different data forms

(29 ecohydrological parameters versus 365 daily means). MAH:Nor-

malized had higher within-class similarity than IHA:MI (mean NCC of

0.83 versus 0.65), although this is partly explained by the addition of a

seventh class. The addition of another class in MAH:Normalized dis-

tributed rivers that were in class 1 in IHA:MI to classes 1, 2, and 4 in

MAH:Normalized, thereby aggregating more rivers in the central–

western Amazon. In comparison with MAH:Normalized, the spatial

distribution of IHA:MI seemed to better reflect frequency and rate-of-

change parameters indirectly connected to flow magnitude, even

though direct flow-magnitude parameters were excluded (Figures 5

and 7). For example, as IHA:MI classes increased in flow magnitude,

they exhibited a more consistent positive linear relationship with

stream order, compared with MAH:Normalized classes (Table 5), indi-

cating a stronger association with stream order and the retention of

parameters indirectly related to flow magnitude. Despite a lack of cor-

respondence with stream order, the MAH:Normalized classification

formed spatially coherent classes, most likely attributed to variation in

seasonality and number of reversals relative to discharge magnitude, a

feature that emerges more clearly in normalized hydrographs

(Figure 7).Through aggregation with median annualized hydrographs

and using mean IHA summary statistics, this analysis captured charac-

teristic long-term river behaviour but did not explicitly consider rare

events. Ecological phenomena such as severe floods or droughts that

may redistribute species are thus not associated with these classes as

applied. This presents an opportunity for future work in focusing on

the spatiotemporal distribution of extreme flow events and their

ecohydrological implications.

4.5 | Beyond hydrology

Whereas flow can be regarded as an important ecological variable in

regulating aquatic ecosystems, there are multiple spatially variable

drivers of ecology at the landscape scale. Notably, the hydrologically

derived classes presented here do not correspond to the distribution

of geologically derived white-water, black-water, and clear-water riv-

ers (Junk et al., 2011). In evaluating sediment dynamics across the

Central Amazon floodplains, Fassoni-Andrade and de Paiva (2019)

found high spatial and temporal variability with respect to stream

order and basin chemistry. Such information, paired with flow regime

behaviour, would be useful for supporting ecological and biogeo-

chemical studies. From an ecological standpoint, Amazonian flow

regimes are underpinned by geological differences in river chemistry

(i.e. aeration, sediment, and turbidity) that combine with flow charac-

teristics to form strikingly different ecosystems (e.g. igapós and

várzea floodplains) directly related to variation in soil fertility, produc-

tivity, and richness of fish species (Junk et al., 2011). At several con-

fluence zones, the mixing of waters of vastly different ecosystems

enables migrating fish to take advantage of unique habitats. For

instance, the mixing of the white-water Pastaza River in the Peruvian

Amazon with local black-water rivers and lakes creates an ecosystem

with floating mats of vegetation and flooded riparian forests,

attracting nearly 300 documented fish species (Anderson

et al., 2018).

Although the focus of this analysis was Amazonian rivers, the

basin is also widely recognized for large and hydrologically important

systems of wetlands, lakes, and floodplains. In contrast to temperate

basins, large tropical floodplain systems are characterized by a pre-

dictable monomodal flood pulse, where plant and animal species have

attuned their life cycles to its seasonal rhythms (Adis & Junk, 2002).

Between the Andean Amazon landscape gradients, the same geo-

graphical features driving variation in Amazon rivers are likely to result

in a unique and varied constellation of water bodies, including glacial

lakes, oxbow lakes, floating meadows, and dynamic floodplains

(Melack & Hess, 2010).

5 | CONCLUSION

Inductive classifications such as the one presented here strategically

organize inherently complex streamflow data, and hydrological classi-

fications can provide insight into trends of ecologically relevant IHA

parameters. Inductive classifications are intended for basins with a

sufficient coverage of stations. This assumption was largely satisfied

in this analysis and highlighted selected basins where additional long-

term streamflow monitoring may further refine Amazon flow classifi-

cation. The wide spatial coverage and availability of long-term

streamflow data across the Amazon basin allowed the characterization

of baseline flow variation and alteration, and is essential for river mon-

itoring, conservation, and restoration. In the context of human alter-

ation, ascribing both relative and absolute features of flow classes can

provide a basis for detecting changes within and across streamflow

classes. This enables class-specific analysis of changes in flow regime

characteristics that are directly linked to physioclimatic and human

regulation of rivers.

Given the rapid pace of human modification of tropical mega-

basins worldwide (Winemiller et al. 2016), understanding the spatial

distribution and predictability of streamflow patterns across basins

can provide insight into river functioning at the ecosystem scale and

support aquatic conservation and efforts to maintain and restore the

natural flow regime (Poff et al., 2010). This concept may be applied in

the development of conservation programmes that specifically aim to

maintain hydrological diversity. Effective programmes would assess
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potential losses in hydrological function or deviations from the natural

flow regime and then guide and promote management decisions that

ultimately maintain baseline ecological functioning. Future work is

needed to determine how climate change, dams, and changes in land

use and land cover will affect the wide diversity of natural flow

regimes and associated ecosystem structure and function. Accompa-

nying deductive classifications can further inform physical variations

that control flow regime variability and extend streamflow character-

istics to data-scarce basins. Overall, this comprehensive classification

approach can yield available data to assist in the conservation of natu-

ral flow regimes given limited financial and organizational resources,

further our understanding of flow–ecology relationships, and guide

the restoration of altered flows to promote the long-term welfare of

freshwater ecosystems across the Amazon basin.
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